

Greener solvents for PSA production

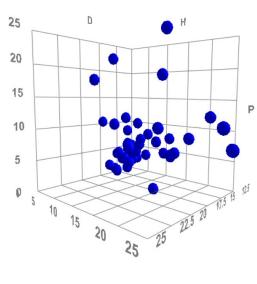
DR. FERGAL BYRNE

This project has received funding from the Bio Based Industries Joint Undertaking under the European Union's Horizon2020 research and innovation programme under agreement No 745450.

Resolve project

- 3 year project that started in June 2017 and finished in 2020
- Involves 11 organisations from 5 countries
- Consortium creates a whole value chain
 - From feedstock to solvent producers to end-users
- Aims to find suitable alternatives to Substances of Very High Concern
 - Minimum of one replacement each for toluene and NMP
 - At least comparable performance in relevant applications
 - Improved sustainability, reduced impact on health and the environment.
- Further details at www.resolve-bbi.eu.

Project partners

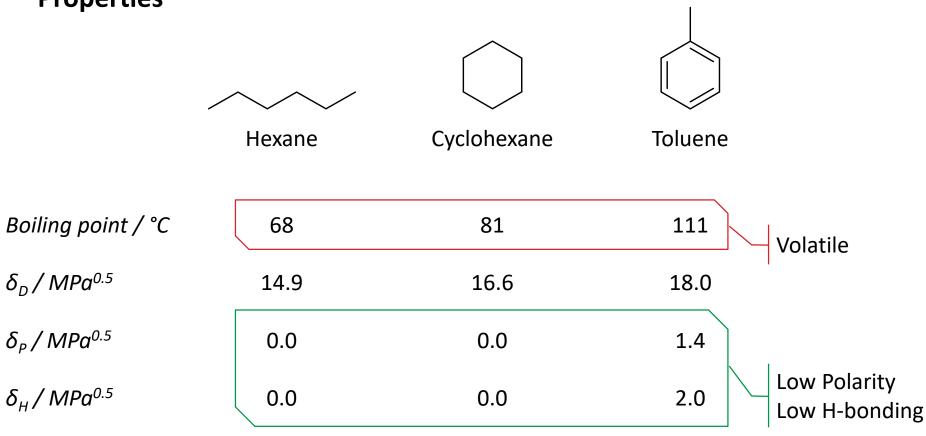


Properties

- High volatility
- Non-polar

Applications

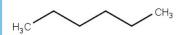
- Reaction media
- Liquid-liquid extractions
- Coating industry



Hazardous Hydrocarbon Solvents

Properties

Data taken from PubChem


N-hexane

Substance identity

EC / List no.: 203-777-6

CAS no.: 110-54-3

Mol. formula: C6H14

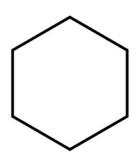
Hazard classification & labelling

Danger! According to the **harmonised classification and labelling** (CLP00) approved by the European Union, this substance may be fatal if swallowed and enters airways, is toxic to aquatic life with long lasting effects, is a highly flammable liquid and vapour, is suspected of damaging fertility, may cause damage to organs through prolonged or repeated exposure, causes skin irritation and may cause drowsiness or dizziness.

Regulatory activities

 Substance included in the Community Rolling Action Plan (CoRAP).

Data taken from ECHA - Information on Chemicals


Cyclohexane

Substance identity

EC / List no.: 203-806-2

CAS no.: 110-82-7

Mol. formula: C6H12

Hazard classification & labelling

Danger! According to the harmonised classification and labelling (CLP00) approved by the European Union, this substance may be fatal if swallowed and enters airways, is very toxic to aquatic life, is very toxic to aquatic life with long lasting effects, is a highly flammable liquid and vapour, causes skin irritation and may cause drowsiness or dizziness.

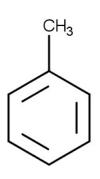
Properties of concern

PBT

Regulatory activities

 Some uses of this substance are restricted under Annex XVII of REACH.

Data taken from ECHA - Information on Chemicals


Toluene

Substance identity

EC / List no.: 203-625-9

CAS no.: 108-88-3

Mol. formula: C7H8

Hazard classification & labelling

Danger! According to the **harmonised classification and labelling** (CLP00) approved by the European Union, this substance may be fatal if swallowed and enters airways, is a highly flammable liquid and vapour, is suspected of damaging the unborn child, may cause damage to organs through prolonged or repeated exposure, causes skin irritation and may cause drowsiness or dizziness.

Additionally, the classification provided by companies to ECHA in **REACH registrations** identifies that this substance is suspected of damaging fertility or the unborn child, is harmful to aquatic life with long lasting effects and causes serious eye irritation.

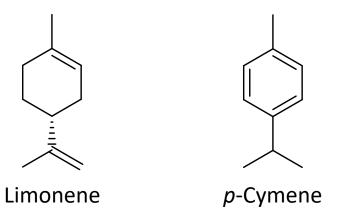
At least one company has indicated that the substance classification is affected by impurities or additives.

Data taken from ECHA - Information on Chemicals

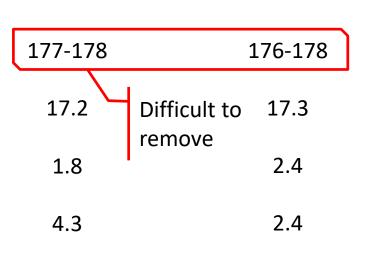
Regulatory activities

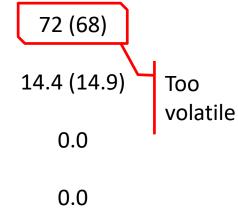
- Substance included in the Community Rolling Action Plan (CoRAP).
- Some uses of this substance are restricted under Annex XVII of REACH.

Alternatives

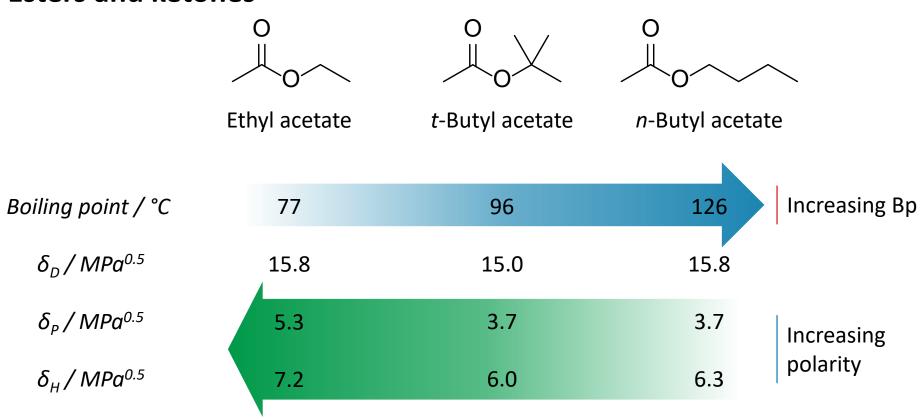

Green solvent requirements

Easy to synthesise	Few steps from biomass		
Safe	Non-toxic, non-peroxide forming in storage conditions		
Easy to remove	But not too easy to remove (bp 70-140 °C)		
Low-polarity	Not necessarily exact replica of traditional hydrocarbons		
High-performance	Must not interfere with product formation		
Sustainable	The use of sustainably-grown biomass waste		
Cost efficient	Must compete with petrochemicals		


Alternatives


Hydrocarbons

Boiling point / °C δ_D / MPa $^{0.5}$ δ_P / MPa $^{0.5}$ δ_H / MPa $^{0.5}$


Data taken from PubChem

Alternatives

Esters and ketones

Data taken from PubChem

Optimal esters and ketones

		0		0
Solvent property	Toluene	Methyl pivalate	Ethyl isobutyrate	Pinacolone
Boiling point / °C	111	100-101	108-110	105-106
Melting point / °C	-95	-70	-88	-93
Density / g·ml ⁻¹	0.867	0.875	0.865	0.803
Autoignition temp. / °C	522	443	451	428
Lower explosion limit / v/v%	1.1	1.3	0.9	1.3
$\delta_{\rm D}$ / MPa $^{0.5}$	18.0	15.0	15.8	15.1
$\delta_{\rm P}$ / MPa $^{0.5}$	1.4	3.8	4.9	5.5
$\delta_{\rm H}$ / MPa $^{0.5}$	2.0	5.0	6.2	5.1
α	0.00	0.00	0.00	0.00
β	0.10	0.45	0.48	0.58
π*	0.51	0.49	0.51	0.49
Log P _(o/w)	2.73	1.74	1.54	1.21

F. P. Byrne, B. Forier, G. Bossaert, C. Hoebers, T. J. Farmer and A. J. Hunt, "A methodical selection process for the development of ketones and esters as bio-based replacements for traditional hydrocarbon solvents." *Green Chemistry*, 2018, **20**, 4003–4011.

All form

storage

explosive

peroxides in

Ideal Bp and

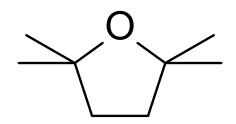
HSPs

Ethers

Data taken from PubChem

Boiling point / °C

 $\delta_{\scriptscriptstyle D}$ / MPa $^{0.5}$


 $\delta_{\scriptscriptstyle P}$ / MPa $^{0.5}$

 $\delta_{\scriptscriptstyle H}$ / MPa $^{\scriptscriptstyle 0.5}$

Green solvent requirements

Easy to synthesise	Few steps from biomass
Safe	Non-toxic, non-peroxide forming in storage conditions
Easy to remove	But not too easy to remove
Low-polarity	Not necessarily exact replica of traditional hydrocarbons
High-performance	Must not interfere with product formation
Sustainable	The use of biomass waste
Cost efficient	Must compete with petrochemicals
	<u></u>

F. Byrne, B. Forier, G. Bossaert, C. Hoebers, T. J. Farmer, J. H. Clark, and A. J. Hunt. "2,2,5,5-Tetramethyltetrahydrofuran (TMTHF): A Non-Polar, Non-Peroxide Forming Ether Replacement for Hazardous Hydrocarbon Solvents." *Green Chemistry*, 2017, **19**, 3671–78.

Synthesis

Patented by Nitto WO2018033635 (A1)

Acetylene

Acetone

1. K(ⁱBuO)

2. H₂, Pd/Al₂O₃

2,5-Dimethyl-2,5-hexanediol

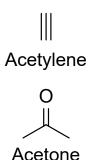
H-beta-zeolite

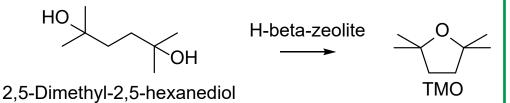
Conversion = 100%

Selectivity = >99%

Process Atom Economy (AE) = 96%

Reaction Mass Efficiency (RME) = 93%

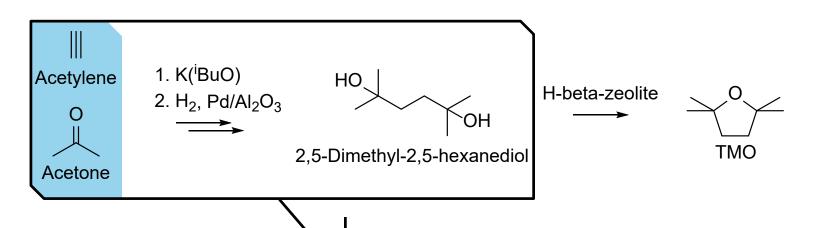

TMO


Synthesis

300 L synthesis carried out at BBEPP in Belgium

- 1. K(ⁱBuO)
- 2. H₂, Pd/Al₂O₃

2. Π₂, Pu/Al₂



- Conversion = 100%
- Selectivity = >99%
- Process Atom Economy (AE) = 96%
- Reaction Mass Efficiency (RME) = 93%

Synthesis

BASF patented process (US6956141 B1) 2,5-Dimethylhexane-2,5-diol used for polymers

Synthesis

- 1. K(ⁱBuO)
- 2. H₂, Pd/Al₂O₃

ОН

2,5-Dimethyl-2,5-hexanediol

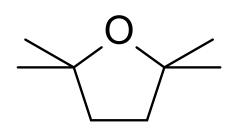
H-beta-zeolite

——➤

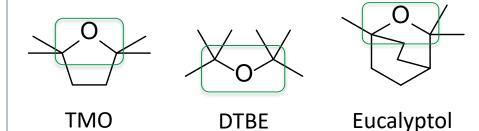
TMO

Technically easy to produce from biomass

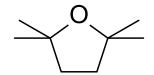
- Acetylene from partial combustion of methane
- Acetone from ABE fermentation



Non-peroxide forming ether

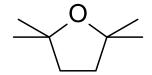

<u>Traditional ethers</u>

- Abstractable alpha hydrogens
- Removed radically is ambient conditions


Quaternary ethers

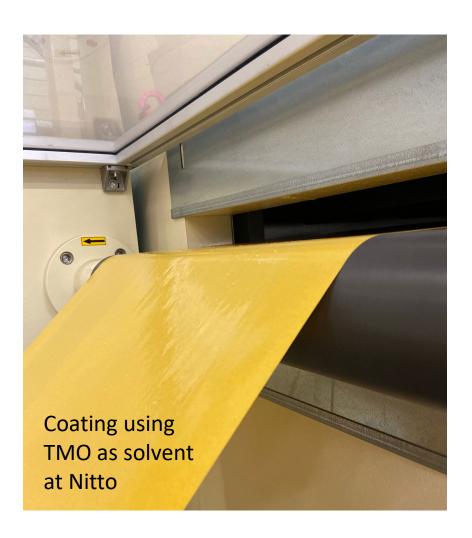
- Unabstractable alpha methyl groups
- Very difficult to remove

F. Byrne, B. Forier, G. Bossaert, C. Hoebers, T. J. Farmer, J. H. Clark, and A. J. Hunt. "2,2,5,5-Tetramethyltetrahydrofuran (TMTHF): A Non-Polar, Non-Peroxide Forming Ether Replacement for Hazardous Hydrocarbon Solvents." *Green Chemistry* 19, 3671–78. https://doi.org/10.1039/C7GC01392B.



TMO

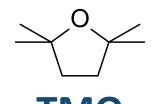
		Quaternary ethers			
Solvent property	Toluene	Eucalyptol	ТМО	DTBE	THF
Boiling point / °C	111	176	112	107	66
Melting point / °C	-95	2	<-90	<-90	-108
Density / g·ml ⁻¹	0.867	0.927	0.802	0.762	0.883
Autoignition temp. / °C	522	No data	417	No data	321
Lower explosion limit / v/v%	1.1*	No data	0.9*	No data	2.0
$\delta_{\rm D}$ / MPa $^{0.5}$	18.0	16.6	15.4	14.0	16.8
$\delta_{\rm P}$ / MPa $^{0.5}$	1.4	2.5	2.4	2.5	5.7
$\delta_{\rm H}$ / MPa $^{0.5}$	2.0	2.5	2.1	1.4	8.0
α	0.00	0.00	0.00	0.00	0.00
β	0.10	0.72	0.70	0.51	0.58
π*	0.51	0.41	0.30	0.17	0.59
Log P _(o/w)	2.73	1.79	1.53	1.29	0.46



TMO

As a solvent in PSA production

- Polymer properties were almost identical when TMO was used as the solvent
 - M_w
 - M_n
 - Conversion
- PSA properties were comparable to toluene
 - Adhesion properties better with TMO
 - Cohesion properties worse with TMO
 - More optimisation to be done!



Application tests summary

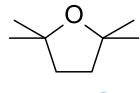
Application	Toluene-like	Ether-like
Radical-initiated polymerisation for adhesive production		
Grignard reaction		
Polyester synthesis		
Uncatalysed esterification		
Uncatalysed amidation		
Buchwald-Hartwig		

Toxicity

- *in vitro* testing of TMO and metabolites on a broad range of endpoints using reporter gene assays
 - No indications of (severe) toxicity
 - Very similar to eucalyptol
- in silico analysis based on structural similarity (QSAR)
 - No indications of (severe) toxicity
- Additional in vitro micronucleus test performed to exclude genotoxicity
 - No indications of genotoxicity
- Must be extended to full testing before REACH registration

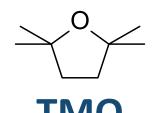
Sustainability

• Acetone and acetylene can be easily produced from biomass


From ABE fermentation

From Anaerobic digestion

- Superior atmospheric breakdown than toluene
 - Less polluting breakdown products
 - Likely due to quaternary carbons in structure
 - Study ongoing, publication to follow



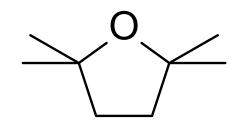
TMO

Cost €€€

- Not commercially available at present, but research samples will be available soon
- Cost tied to bio-based content
 - Petroleum-derived TMO will likely be slightly more expensive than toluene
 - This is not surprising, as toluene is essentially pumped from the ground ready for use
 - However, it will be competitive
 - Increasing bio-based content will increase price
 - But only 25% bio-based content required to be class as bio-based (CEN/TC 411 standard)

Cost €€€

Positives


- As bio-based technology improves with increasing research, cost will come down
- Economies of scale will also see price reductions
 - Current estimates are based upon very small scale relative to toluene production
- Contact me for research samples!

Green	so	lve	nt
requir	em	en	ts

Easy to synthesise		4 steps from biomass
Safe		Non-toxic, non-peroxide forming in storage conditions
Easy to remove	1	But not too easy to remove
Low-polarity	-	Not necessarily exact replica of traditional hydrocarbons
High-performance		Must not interfere with product formation
Sustainable		The use of biomass waste
Cost efficient		Will compete with petrochemicals

Special thanks to

Bio-Based Industries Joint-Undertaking (BBI JU)

Nitto Belgium

Bio-Based Europe Pilot Plant (BBEPP)

BioDetection Systems (BDS)

Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO)

University of York

Any questions?

Application testing

Radical-initiated polymerisation

Patented by Nitto WO2018033634 (A1)

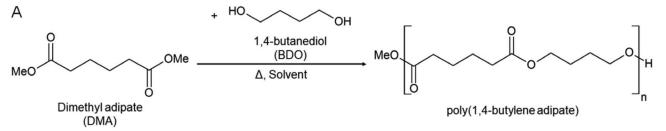
>10

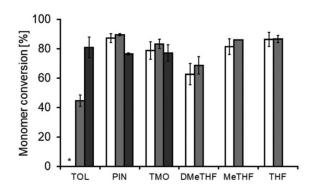
291

F. Byrne, B. Forier, G. Bossaert, C. Hoebers, T. J. Farmer, J. H. Clark, and A. J. Hunt. "2,2,5,5-Tetramethyltetrahydrofuran (TMTHF): A Non-Polar, Non-Peroxide Forming Ether Replacement for Hazardous Hydrocarbon Solvents." *Green Chemistry* 19, 3671–78. https://doi.org/10.1039/C7GC01392B.

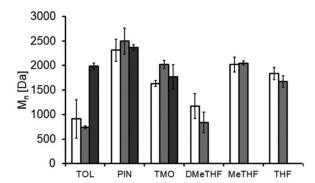
Tack (wt_supported) / g(e)

Cohesion / days(d)


n/a(f)


n/a(f)

>10


264

.OMe

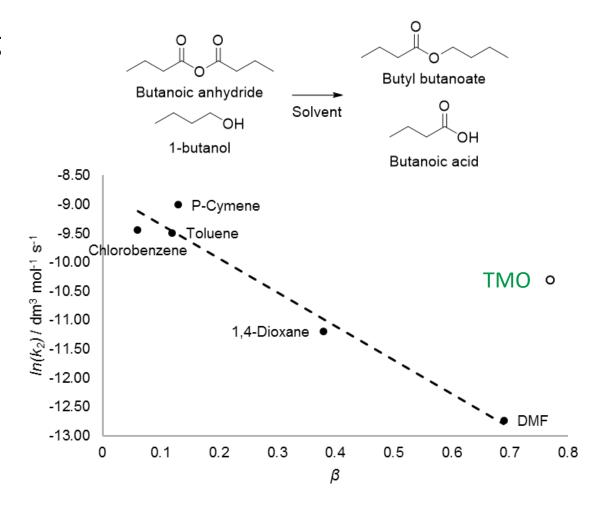
Application testing

Polyester

MeC Δ, Solvent synthesis Dimethyl adipate poly(1,8-octylene adipate) (DMA) 100 3000 Monomer conversion [%] 2500 A. Pellis, F. P. Byrne, J. Sherwood, M. 2000 1500 W Vastano, J. W. Comerford, and T. J. Farmer, "Safer Bio-Based Solvents to Replace Toluene and Tetrahydrofuran for 1000 the Biocatalyzed Synthesis of Polyesters." 500 Green Chemistry, TOL PIN TMO DMeTHF MeTHF THF TOL TMO DMeTHF MeTHF ■ 85°C □ 30°C ■ 50°C

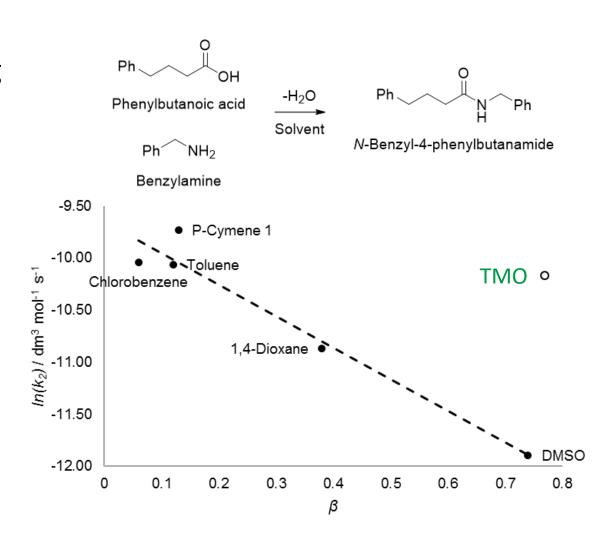
1,8-octanediol (ODO)

MeO


https://doi.org/10.1039/C8GC03567A.

Application testing

Uncatalysed esterification



Application testing

 Uncatalysed amidation

Application testing

 Radical-initiated polymerisation

	React	tion A	Reaction B	
Solvent	Conv. alkyl halide (%)	Ratio 6 : 5	Conv. alkyl halide (%)	Ratio 6:5
THF	99	82:18	99	67:33
2-MeTHF	100	87:13	100	97:3
TMTHF	0	-	0	-
Toluene	0	-	0	-

Peroxide test

	Solvent		T = 0 hours (ppm)	T = 3 hours (ppm)
	THF	Control	10-30	10-30
Quanta		Test	10-30	>100
Quanto	2-MeTHF	Control	2	2
1 mgLA 3 10 30 100		Test	2	>30
	СРМЕ	Control	1	1
		Test	1	3-10
Scale	TMTHF	Control	0	0
		Test	0	0 (reflux)